ZEISS Knowledge Base
Help
ZEISS Knowledge Base

Why does processing a 3D animation movie export take so long?

This article examines the factors that affect the rendering time for exporting high-resolution snapshots and movies.

Overview

The time it takes to render a single snapshot is mostly dependent on the Data and Image Resolution setting. Higher data resolution means more data to process and more time. Reduce the Data and Image Resolution parameters to speed up the rendering time.

When rendering animations the framerate is also important. The higher the framerate the more images we have to render, and the longer it will take.

How is producing a high-resolution snapshot different?

When in the 4D viewer, we can always use the Snapshot button to quickly take a snapshot of the viewer that we can then paste into another application.

This process is instantaneous, but the resolution of the image is as it was in the viewer. It is essentially a screengrab.

In many cases, snapshots at that resolution are perfectly fine, but for an important presentation, or if the image will be displayed in a larger format (e.g. poster), getting a better quality image may be desirable. In those cases, we can use the high-resolution snapshot button instead. 

When using the high-resolution snapshot , we can select from additional options to change the size and quality of the image output.

The two options that affect the quality and processing time are Image Resolution and Data Resolution.

The image resolution dictates how big the output image is in pixels. For a slideshow or text document illustration, a Full HD render is usually sufficient. For a large poster or visualization on a high-resolution screen, a higher resolution may be preferable. Going from 1080p HD to 4K UHD can lead to a 3-4x increase in rendering time.

The Data Resolution changes how much of the image data is used to render the image. A higher data resolution will result in a smoother image and finer detail. The scale of the Data Resolution bar goes from 64MB on the left, to whatever is the full data resolution on the right. Typically, each graduation means a doubling of the amount of image data that is used to render the image. Using more data to render the image results in finer details as mentioned above, but also results in longer loading times because we're loading more data, and longer rendering times because we're processing more data. 

Note that the Data Resolution scale is color-coded according to the size of the dataset and the computing resources available.

The green part of the scale represents the amount of video memory available. As long as we stay within the green range, the data selected will be loaded into the GPU's VRAM and the processing time will generally be fast.

Most computers have more system memory (RAM) than they have video memory (VRAM), and so, if the dataset is larger than the amount of VRAM available we may be able to load it into the RAM instead. The loading time is likely to be longer because we are loading more data, but the rendering time will be longer still because now the GPU is also having to access and process the data from the RAM instead, which is slower than reading from the VRAM. So, while doubling the data resolution while staying in VRAM can result in a 3x rendering time increase, doing so while switching to RAM causes a 5x increase in rendering time.

Large datasets (those larger than the RAM available on the system) can't be loaded all at once in either the RAM or VRAM. In these cases Vision4D still allows users to generate high-resolution snapshots and videos, but the software will proceed by loading smaller chunks of the data, one at a time, processing each in turn before loading the next block and so on until the full dataset has been processed. Clearly, this method is much slower, not only because of the larger amounts of data we must process but also because the process of subdividing the image is comparatively inefficient. Consequently, processing datasets at a resolution larger than what is possible to store in RAM will be much slower. 

Note that using a very high level of Data Resolution coupled with a low Image Resolution is likely to lead to much longer processing times without significant improvements in image quality, at least from a low-level zoom. A high level of Data Resolution is most useful if the snapshot uses a highly zoomed-in region of the volume. 

Conclusions

The time it takes to render images is dependent on several factors, including data resolution, the size of the image or video we are producing, and the framerate. As with many things, higher quality and bigger datasets lead to longer processing times. 

At arivis, we decided that everything a user might want to do should be possible regardless of the size of the dataset, so the option to render videos at the highest possible quality is always possible, but that does not mean to say that this process won't take a lot of time and that some compromises aren't necessary if time is an important factor.

Impressum
Carl-Zeiss-Strasse 22
73447 Oberkochen
Germany
Legal